

OP-2-1326

Wednsday, May 11, 2011, 05:00-05:20 pm Room: Reda 5

EFFECTS OF WOOD FILLER ADDITION AND PROCESSING METHOD ON THE DYNAMIC MECHANICAL PROPERTIES OF WOOD PARTICLE/HDPE COMPOSITES

Hassine Bouafif^a, Ahmed Koubaa^a*, Alain Cloutier^b, Patrice Dole^c, Patrick Perré^d

^a Chaire de recherche du Canada sur la valorisation, la caractérisation et la transformation du bois, Université du Québec en Abitibi-Témiscamingue, 445 BD de l'Université, Rouyn-Noranda, (QC) J9X5E4, Canada, ^b Centre de recherche sur le bois, Pavillon Gene-H.-Kruger, 2425 rue de la Terrasse, Université Laval, Québec (QC), Canada G1V 0A6, ^c INRA/University of Reims, UMR 614, Research Unit for Fractionation of. Agricultural Resources and Packaging, Esplanade Roland Garros BP 224-, 51686 Reims, France and ^d AgroParisTech, INRA, UMR1093, LERMAB, 14 rue Girardet, 54000, Nancy, France.

*Corresponding author: <u>ahmed.koubaa@uqat.ca</u>

The effects of wood filler size, species and load and processing methods on the dynamic mechanical properties of wood particle/HDPE composites were investigated. Storage modulus (E') decreased with an increase in temperature. A clear effect of species on E' was observed. Jack pine-based composites showed the highest E', attributed to better interfacial adhesion between jack pine wood fiber and HDPE matrix. In HDPE, α -relaxation peak marginally shifted to high temperature regions with the addition of wood fiber and the resultant loss modulus (E'') increased by 17% to 30%, indicating more viscous dissipation. Slow cooling and quenching of extruded samples significantly affected the α -peak temperature. E' increased with an increase in frequency, whereas tan δ and E'' decreased. Moreover, the α -peak tended to shift to lower temperatures as frequency decreased. A slight increase in ΔE was detected after wood particle addition, which may be explained by the increase in crystallinity due to the nucleation efficiency of wood filler.