Sustainable Development, Reprocessing & Recycling

SL 14.4

Plasticisation of Recycled PET during Extrusion with Sc CO₂

H. Benkreira and R. Patel

IRC in Polymer Science and Technology, School of Engineering, Design and Technology University of Bradford, Bradford, BD7 1DP, UK

This paper describes the effect of liquid CO_2 on pure and recycled PET during extrusion. The aim is to establish the extent of the plasticising effect of CO_2 on recycled PET with a view to lower extrusion temperature to avoid degradation.

The experiments were carried out in a 50mm barrel custom-built single screw extruder fully instrumented for the control of temperature, screw speed and pressure. To ensure good mixing of the melt with the injected CO_2 a cavity transfer mixer and a static mixer sections were inserted between the extruder and the die, immediately after the CO_2 injection point. Liquid CO_2 was fed from a cylinder via a variable stroke/volume high-pressure pump suitably calibrated. The injector was a spring driven valve that releases the CO_2 into the melt only after a pressure difference in favour of the CO_2 side occurs at the tip. For the purpose of measuring the rheology of the melts with and without CO_2 , a 130mm long 3.0mm diameter capillary die with pressure ports 90mm apart was mounted on the extruder at the end of the static mixer. A bolt die was attached to the capillary die and directed the melt to a cooling bath. This allowed the hall off and collection of long strand samples of the extruded PET for laboratory tests.

The PET grade was a typical copolymer PET used for carbonated soft drinks with an IV of 0.8 and a crystalline melting point of 245°C. Two forms of this polymer were used: a pure granular form dried thoroughly prior to extrusion and the same polymer injection moulded then ground to mimic a recycled version.

The paper will compare melt pressure, flow rate and viscosity data without CO_2 and with CO_2 at various screw speeds and temperatures down to near the crystalline melting point.