pps proceeding - Abstract Preview
pps proceeding
Symposium: S06 - Nanocomposites
Oral Presentation
 
 

A comparison of LLDPE-based nanocomposites containing MWCNT and graphene

Vasileiou Alexandros (1), Docoslis Aristides (1), Kontopoulou Marianna (1)*

(1) Queen's University - Ontario - Canada

Composites of linear-low density polyethylene (LLDPE) with multi-walled carbon nanotubes (MWCNT) and thermally reduced graphene (TRGO) were produced by melt compounding. The composites were compatibilized by grafting aromatic pyridine groups onto the LLDPE backbone. The aromatic moieties established non-covalent π-π interactions interactions with the carbon nanostructures, thus allowing for efficient dispersion, without compromizing their electrical properties. By using identical matrices, it was possible to investigate the effects of filler geometry on the electrical, mechanical and rheological properties of the composites. The 1-D nature and smaller surface area of the MWCNT facilitated their dispersion within the polymer matrix, whereas the graphene agglomerates appeared to breakup through an erosion mechanism. The resulting mixture of aggregates and individual graphene platelets favoured lower electrical and rheological percolation thresholds. However the maximum electrical conductivity achieved in the TRGO/LLDPE was lower by about an order of magnitude compared to the MWCNT/LLDPE composites, probably due to residual oxygen in the graphene’s structure. TRGO based composites presented higher moduli at the same filler loadings, while elongations at break were comparable. All composites exhibited time-dependent rheological properties, indicative of their tendency to aggregate. A more pronounced increase in viscoelastic properties was noted in the composites containing TRGO, presumably due to the higher surface area of the graphene platelets, and the presence of larger aggregates.